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Abstract _ .:

We calculate the decay rates of leading Regge trajectory states _ Q
r-_-_

for very high level number in open bosonic string theories, ignoring ._ ._

tachyon final states. The optical theorem simplifies the analysis while .,.

enabling identification of the different mass level decay channels. Our 'J ._

main result is that (in four dimensions) the greatest single channel _._ _=

is the emission of a single photon and a state of the next mass level '_

down. A simple asymptotic formula for arbitrarily high level number is _ -- _"

given for this process. We also calculate the total decay rate exactly _ r--a.. co "'_

up to N=100. It shows little variation over this range but appears _.-_,.,_

to decrease for larger N. We check our formalism in examples and -_ --.

calculate the decay rate of the first excited level for open superstring _. _

theories. The calculation may also have implications for high spin _ v_ _

meson resonances. _ _
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Introduction

In all the years of string theory [1], remarkably little attention has been

paid to the interactions of the massive string modes. Recent work [2,3,4]

on the statistical mechanics of strings at very high densities has emphasised

the fact that as the Hagedorn temperature is approached, a phase transition

occurs with most of the energy going into very long strings. It is therefore of

some importance to understand the interactions of very excited strings and

in particular how fast they decay.

Quite independently of this it is interesting to try and understand whether

and how a classical limit emerges in string theory - do highly excited strings

behave in a 'classical' way?

In this paper we attempt a modest beginning to the effort at a better

understanding of the massive string states by calculating the decay rate of

a particular class of occupation number states of arbitrarily high energy -

the states on the leading Regge trajectory of open string theories. A similar

problem was considered in 1971 by Green and Veneziano [5] who argued

that the high mass intermediate states in dual amplitudes had narrow decay

widths and our result appears consistent with theirs. However their argument

was rather incomplete.

Our main tool will be the optical theorem and a method for extracting

the imaginary part of the string self-energy diagram which we explain in the

first section. One advantage of our method is that it enables one to identify

which piece of the imaginary part is responsible for the decay into a given

mass level for each of the final states. Thus while we are saved considerable

labour in calculating polarization sums and phase space integrals we can
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recover quite a lot of detailed information on how massive strings decay.

This is actually essential to how we treat the tachyon. Of course tachyons,

living on a continuous Lorentz hyperboloid x, p2 = m 2, do not have a definite

sign for their energy. Any decay process involving tachyons is infinite - one

can obtain in the decay an arbitrarily negative energy tachyon plus an arbi-

trarily positive energy excited state in the 'decay' of a photon for example.

This is quite a graphic way of seeing the 'vacuum' instability in theories with

tachyons.

However we wish nevertheless to calculate physically meaningful quanti-

ties for bosonic strings since these are certainly the most tractable and allow

us to proceed furthest. Since these theories have tachyons we will simply

calculate the total decay rate of highly excited strings into everything ez-

cept tachyons. A major advantage of our method is that it enables us to

extract the 'tachyonic' part of the decay rate rather simply and calculate the

remaining, finite part. This is perfectly well defined and in fact it is quite

likely that the main features of our calculation will remain true for theories

without tachyons - heterotic strings and superstrings for example.

We shall calculate in arbitrary d. The open bosonic string is of course

inconsistent at the one loop level outside of d = 26, and in fact the need for

d = 9.6 was discovered in calculations by Lovelace[6] of one of the diagrams

we consider. However we shall really only be using the loop diagrams as a

convenient way of summing tree diagrams (we shall only use it's imagin_y

part aud not the real part which is infinite), which do not require d = 96.

Furthermore, because of the particular external states we consider the loop

tOut metric eonvertion throughout thi-q pape: is (-,+,+,+...).
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amplitude will not have the singularities of the type considered by Lovelace,

corresponding to propagating closed strings. Our calculations would also

apply to the case of open strings in d = 26 with a subset of the 26 dimensions

taken to be toroidaily compactified, and with the compactification radius so

small that degrees of freedom depending on the extra dimensions are never

excited.

We shall discuss in detail the diagrammatics for the simplest case, the

orientable U(1) open string. The extension of our result to other groups

should be straightforward and not qualitatively different.

Our main result is that the largest single process is the decay into a

photon and a state at the next level down - for this process the decay rate

is inversely proportional to the mass of the initial string state. The total

decay rate is much harder to say anything analytic about. We calculate it

up to N=100 and it appears to be slowly decreasing for large N. This means

that the open string coupling constant cannot be thought of as a splitting

probability per unit length - if this were the case long strings would fragment

at a rate increasin 9 as v/-N.

There may well be implications of our result for hadronic physics. It

is well known that resonances of very high spin are observed rather more

commonly than would be expected naively - their widths being generally no

larger than resonances of lower mass.

One would expect that the bosonic string description of mesons would be

good for the leading trajectory resonances since these are the most spatially

extended states. Our procedure of throwing away the tachyon is certainly a

fairly violent procedure at the low end of the mass spectrum so our calcula-

4
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tions are probably a poor description of the interactions of low mass states.

However the decay rates we find are not dominated by the emission of the

lowest mass states as can be seen for example in Figure 7. It seems reason-

able therefore that our calculations should provide a reasonable decription

of the decays of high spin mesons. It is gratifying that our results lead to an

approximately constant decay rate as a function of level number, in qualita-

tive agreement with experiment. It would be interesting to try to make the

connection more precise - this could provide new information about hadronic

strings.

As a final motivation for this work, it may eventually provide a consistent

method for treating 'back-reaction' problems in radiation from cosmic strings

gravitational, electromagnetic or goldstone radiation. In the quantised

string these processes are automatically finite, and the probability amplitudes

for various final states should also tell us the nature of the configuration that

the string ends up in. We leave this however for future work.

In a subsequent paper three of us [7] will extend the treatment presented

below to closed strings where interesting issues connected with modular in-

variance arise.

The outline of this paper is as follows. In Section I we give a simple exam-

ple of the optical theorem in &dimensional scalar field theory and a method

of extracting imaginary parts which we later use for strings. In Section 2 we

calculate the one loop planar self-energy diagram for arbitrary highly excited

external strings on the leading Regge trajectory, for which the vertex oper-

ators are particularly simple. In Section 3 we calculate its imaginary part,

and in section 4 we discuss how the other topologically distinct diagram at



this order should be added. The total decay rate as a function of mass of

the initial state is calculated exactly up to level 100, illustrated in Figures 6

to 8. In Section 5 we find an asymptotic formula for the single greatest term

in the decay, due to the string emitting a photon and lowering its mass level

by one. In Section 6 we calculate the decay of the first massive state in open

superstring theories by the same method.

While this work was being completed we recieved a preprint by J. Polchin-

ski [12] who discusses the interactions of macroscopic closed strings on a

torus. He mentions that by a similar method one could calculate the decay

of a closed string into open strings. His result seems quite different to ours

- he claims it is interpretable as a splitting probability per unit length. It

would be interesting to understand the reason for this apparent discrepancy.

1 The Optical Theorem: A Simple Example

In this section we present a simple example of the optical theorem for inter-

acting scalar fields. This is of course very well known and in this example

rather unnecessary - integrating over phase space is simpler. However the

method we use will generalise directly to the case of strings, both open (in

this paper) and closed (in a sequel [7]). It may also seem rather pedestrian

for open strings, where a quicker approach would be to use a generalisation

of the Cutkosky rules (see for example [11]). However both in the interests of

giving a rigorous self contained account and because our approach generalises

to closed strings, we prefer the method we shall explain below.

To recap briefly, the optical theorem starts from the unitarity of the S

ORIGINAL PAGE 13'

OF POOR QUALITY

_tppr,I, r



i i 1_"

OF pO0_, r' fi...,_ Y

matrix:

S=I+iT SfS=I--,i(T I-T)=TIT (1)

Taking matrix elements and defining < f lTli >= T/i'_t(pl-p,) we obtain 2

21roT,,= Z l T,s 12e_(ps- p,) (2)
t

where of course initial and final states must be normalised, producing the

usual 2E factors and the volume and time factors which turn the right hand

side into a decay rate.

Now consider a theory with two scalar fields • and ¢ with masses M

_¢2 interaction. Then equation (2) relates theand m respectively, and a

imaginary part of the _ self-energy to the total decay rate of _ particles into

particles . To lowest order in the coupling , this is shown diagrammatically

in Figure 1.

In its rest frame, the ff particle has momentum k _' = (M, 0) and we have

for the one loop ff self-energy

A= f _P
iTi_ (s)

_-_ J (p, + m_- i,)((k - p)_+ m_- i,)

1 from thewhere _-_ is from normalising the ff particle initial state and

symmetry factor.

Using Schwinger's representation this is

A2

4M f _p fo=da fo°°dl3e -i=('+_'-`')-i_((_'-,))'+''_-'') (4)

which is of course divergent for d _> 4. However from (2) we know that its

imaginary part, being a phase space integral over tree diagrams, must be

2our convention throughout is _ = _ and'fr(p) = 27r6(p)



finite. Performing a Wick rotation, p0 = ipoE we regularise (4) with a Eu-

clidean convergence factor e-^P_. We shall extract the imaginary part of the

regularised expression and then set A to zero. The Schwinger representation

arises naturally in string theory as we shall see, and this method of regular-

isation is close to what happens in the closed string theory, in which there

are no ultraviolet divergences. After performing the Gaussian momentum

integral we change variables to x = a - iA + fl, y = (--iA+_) to obtain

/_2 • 2 '/ I

Til - 4M(47r)_ (_) -_- fo dy/-:A dxzl-_e-ia(u)=-" (5)

__ ,_2 f 1
dyI(y)

- 4M(47r)_ ]o

= ra 2 _ k_y(1 - y)A(y)

where we drop an overall real constant eA3 which tends to 1 as A tends to

zero. Taking the y integral along the real axis, the x integral converges for

all A(y) on the contour (1) shown in Figure 2.

Now the function A(y) is a parabola (Figure 3); for M s < 4m 2 it is always

positive there is no imaginary part and consequently no decay - simply a

reflection of energy conservation. However if M s > 4rn 2 then A(y) is negative

over a range of y which results in an imaginary part for the self energy and

the • particle decays.

To see this is so, for A(y) positive we can rotate the z contour downward

to (2), so z = -iz, A < z < oo. Then Tii is now clearly real ( although of

course divergent as A tends to zero) and there is no decay.

HoweverifM 2 > 4m2 then A(y) is negative between y+ = ](1+_/1- __),4_2

and the contour may only be rotated upward, running around the origin on
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(3). Integrating by parts, we can reduce I(v) in (4) to a real series in negative

powers of A, and a remaining integral.

If d is even, setting z =[ A I z we find

1_-2 • 2-'- f_'_ dzzl-_p,I
= [ A (z) _ itAIA

= tA I_-_((_--:_)..+ (2- _)(3- _) + ...)e"

1 f3 dze'')) (6)+r(_- 1)-( -_-

wherer =1A I A. As before,the series(in inversepowersof h) is ten.

However for finite A the integral along (3) may be distorted to run up along

the imaginary axis, along an infinitesimal semicircle around the origin and

along the imaginary axis up to ioo. The integral along the axis gives a

real principal value (logarithmically divergent as A tends to zero), while the

integral around the semicircle gives ilr. Thus for A negative

1A I_ -_ i_r (7)
Ira(I) -- F( -_ -- 1)

Similarly if d is odd we obtain a real series ending in

• I A i_-2 /0o d_e_ _
•r(_ - _)v_j_, v_ (s)

where we have distorted the integral to run along the imaginary axis. The

integral is now finite as A tends to zero and the result is again given by (7).

These results are also easily obtained in dimensional regularisation.

The remaining y integral in (5) may be performed as explained in Ap-

pendix A to obtain

_2_rMd-5 (1 4m2" "-'
r = (16.),____,r(___ ) _-G )-_- (9)

9
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It is simple enough to check that this is identical with the answer obtained

from the right hand side of (2) •

A222M1/_ _-lpl2E1 / _ , -- Pl P2) (10)
F

1
The 5 comes from the identical ¢ final particles, with momentum px and p2.

One slightly surprising consequence of (9) is that decay rates decrease

rapidly in high dimensions, if the masses and the dimensionless coupling

Am__ are kept fixed. This is a result of the fact that the surface area of a

unit sphere decreases rapidly in high dimensions. For just this trivial reason

massive string modes are rather long lived in 26 dimensions!

2 One Loop String Amplitudes and Decay

Rates

We now turn to the problem of evaluating one loop string amplitudes with

two identical excited external particles. We shall focus on open bosonic

string theories with external particles of definite occupation number, and

futhermore on the states with highest angular momentum for given mass, the

"leading Regge trajectory" states. Classically they correspond to a straight

rotating rod where of course the ends move at the speed of light, although

they are of course occupation number rather than position eigenstates.

We construct the one loop amplitude by inserting two vertex operators

to produce the external states and then tracing over all states circulating

in the loop. This is a well known procedure for external tachyons or vector

particles. In this section we present the calculation for arbitrarily excited

10
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external states and although for the most part this is mostly familiar, there

are some new aspects and we shall highlight these.

We work in d-dimensional spacetime - we shall not see the requirement

d=26 in this process as we discuss later. The states we calculate the decay

of are, in standard notation[l] at level N

1%b >N= 17,_p...;_ a" 10 > (11)

with momentum k obeying the mass shell condition k 2 = -2_rT(N - 1) and

the (symmetric) polarisation tensor r/has N indices. T is the string tension.

1 - 1 and restore T by dimensionalIn what follows we will set TTr = _ -

analysis later. Requiring (11) to be physical (i.e. L, [ ¢ >N = 0,n > 0 )

results in the transversality and tracelessness conditions

(12)

The vertex operator for these states is simply

Vk = rlu,,p....,. : pu p,,pp .... p,'e ik.x : (13)

where dots denote normal ordering and the notation is standard[i].

The conditions (12) are sufficient, with the mass-shell condition, to guar-

antee (13) has the correct conformal dimension. There are no normal ordering

singularities between any of the different terms in (13), because of (12), so

the naive conformal dimension is the correct one. It is also easily checked

that applying the vertex (13) to the vacuum at r = ioo in the usual way [1]

produces the state (11). Again following standard procedure we construct

11
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the one loop amplitude by sewing together the ends of the tree diagram (Fig-

ure 4) with loop momentum p. Including ghosts in the propagators[9,1], we

obtain

// £ /iT = g_ dz: dz_ _tdp Tr(zL°v, z_ °'zv_k)z`'-2-,,z_-_-,, (14)

The evaluation of (14) is weft known for external tachyons or photons[10,1]

and we shall not repeat it here. Generalising this method to the case at hand

we write

0 0 0 ei_.x+_, vv_ = v._.-._( ... ): :1_=o

This allows considerable simplification of the trace calculation.

now arrive at

(15)

Indeed we

92 1 1

_ _. cO 0 0 0 )e:.Pe:.(p_k)H
a = V "_'''_ _ "'" (b-_ .... CO_)(@ .... C@

H = eF,_=, A,,(:,D I_=(=o

where f/denotes the complex conjugate of 7/and

(16)

W ---- XlX2

l-I(1- __)
n=l

1

n(: - w-) [k'(_? + _ - 2_?_) + =(_ + 0.k(z_ - _)

72 2 n n
+n'_._(x_' + _') + (_' + _ )n z:a2] (17)

We note that due to the conditions of transversality and tracelessness of the

polarisation tensor, (16) can be rewritten as

CO (:9 c9 0 )e6Pe(.p
c = v._...__..-_(0¢....0_;)(_ "'"a_ Q le=e=0

12
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n(-l'+=_')
Let us define B = _=0 (l-w-) " Performing the differentiations and paying

careful attention to the combinatorial factors we arrive at

U*:)

'r_-O

P terms

#_, (p,pv...)(p_p,...)B_-,

with all "spare" indices being contracted. Hence (16) can be written

g2 1 I+]o,++,]o
" (Iv!):

U = _ (r!)2( N _ r)! rl'V"" f-I_'"'(P"P"'")(P_ff'") B_-" c:(N-')
r:O

C = H (1 -- mtwm-:)(1- mzw m-')
,_=1 (1 - w'_):

Now we change variables to the 'Schwinger' variables a and fl

(18)

Next we Wick rotate and regularise with a Euclidean convergence factor

e-^P_ as we did in Section 1. Performing the Gaussian integrals and defining

(=-i^)
m = a - iA -F #, y -- (:-iA+#) again as in Section i we obtain

T

P

C

1 g2 _-,NLlf__AdY
2E+,t 4(2r)a/2 _o

= [-y(i - y)(1 - N) + i - i+]

dz (i) :+'-a/: z -'-a/2+1 e-i"'P

i(_) _-' c(=,,==)=(N-'_B(=,,==)N-"

o: (,,(.+1) .(.-1)
f(=)-'( Z ((-1)-=, _ =:: )

(N!)

rt(N - r)!

(19)

13
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Here we have set r/2 z in order to normalise the external states (11)-- 2E..tN!

and have used Jacobi's identity [8] to reexpress the infinite product C in

terms of the partition function and an infinite series ( a Jacobi 84 function).

This is our final expression for the one loop amplitude with identical ex-

cited external particles. We shall now determine how to extract the imaginary

part of it just as in the field theory example.

3 The Imaginary Part of the String One Loop

amplitude

Let us concentrate on the expression for the amplitude (19). In particular

let us consider the factor P. This is simply a polynomial in zl and z_, the

term z_z_ having a coefficient that also depends on the summation variable

r i.e.,

P = _ C;q x_ x_ p,q = 0,1,2,... (20)
p,q=O

where the C_q are numbers.

In terms of z and y we have, recalling from 19 that a = zy + iA,fl =

z(1 - y),

X 1 = e-iZY

X2 = e-i=(1-1_)

where we drop an overall real constant eA in zl, which tends to unity as A

tends to zero. This allows us to include the factor of P in (19) as

i g2 N f01 /-_h (i)2+'-d/2 z-v-d/2+1 KT - 2Ec=t4(2w)d/2 _ _ C;q dy dz
r=O p,q=O

K = e -IA(_)_-_= (21)

14
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following the field theory example we set

A(y)=-(N- 1)y(1-y)- l+py+q(1-y) (22)

The positive and negative regions of this function will determine whether or

not our string can decay. However the -1 in (22) is a reflection of the tachyon:

if this is not removed then the decay rate will be infinite. To see this, return

to (14) where the integrand contains

Tr(xf ° Vk zc2° V-k)

and the trace is over states propagating around the loop. Now zzc° is just

P3/2+/v where N is the level number operator. Inserting a complete set ofxl

occupation number states one sees that the power of Xl occurring in the

trace corresponds to the level number of the particle circulating on that side

of the loop, and similarly for x2. In particular terms independent of xl or z2

correspond to tachyonic states propagating on either side of the loop. Thus

if we wish to extract those parts of P which do not correspond to tachyonic

decays we simply discard the terms in P which do not have at least one power

of xl and x2. We emphasise that this results in a perfectly well defined (and

totally finite) calculation, and corresponds to summing up all tree diagrams

not involving tachyons and integrating over phase space. We perform an

explicit check of this for the simplest case, the decay of the first massive

state into photons, in Appendix B.

The only terms in P we keep are those with at least one power of xl and

x2. This results in the -1 in (22) being cancelled. One can now perform the

15



z integral and take the imaginary part just as in section 1 to get

Irn( T) = 1 g2_r N
2E_., 4(2or)d/2 _ _ C;q 7r

r=O p,q
_+dy I A(y) I_/_+'-__ r(_ + r- 1) (23)

For what values of p and q does A(y) go negative?. We find, for N > 1

that this happens for

(p _ q)2 2(p + q - 2)

(N- 1)2 (N- 1)
+ 1 > 0 (24)

This is the string generalisation of the constraint k 2 > 4m _ we had before.

The values of p and q correspond to different mass levels in the decay products

and (24) just tells us if certain decays are energetically allowed. This is not

the full story - for a given p, q that satisfies (24) we calculate the range of y

for which A is negative (see Figure 3)

Jf (p _ q)2 2(p + q - 2)

(N-l)
+ 1]= 2a (25)

Returning to (23) we have to evaluate the y integral, just as in the field

theory example. From Appendix A we find

_+dy_ [Ald/2+'-2=ad+_'-3J-_ P(_+r-v,.F(_+r ;))(N-I)' +'-2

where a is defined in (25).

Thus (23) becomes

Ira(T) = 1 g_,_] N ,,_'+_-3(lv- 1)_+,-2
2E_..t 4(2_r)d/2 _ _ C" (26),=o,,, "q

where the p, q sums only run over values for which the energy constraint (24)

holds.

16
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4 Twisted Diagrams

Equation (26) is not the final answer because it comes from only one diagram,

the planar diagram shown in Figure 4. In general for open strings there are

two other classes of diagrams, the orientable and nonorientable nonplanar di-

agrams. These are illustrated in Figure 5. To construct these diagrams one

has to use the twist operator. Let us assume for simplicity that we are deal-

ing with (orientable) U(1) strings - which amounts to imagining the strings

have two oppositely charged particles ('quarks') on either end . Charge con-

jugation symmetry (C) reverses the string - it is the same as the operation

(-1) N where N is the level number operator. For example tachyons may be

thought of as neutral point particles, even under C. Photons are odd under

C and so on[l].

To see what this means in tree amplitudes, consider the general 3 point

vertex. The general prescription in string theory is to add all cyclically

inequivalent diagrams contributing to a given process. In this case there are

two diagrams, < 1 [ Y(2) [ 3 > and < 3 [ V(2) [ 1 > in bra and ket notation.

These correspond to the string [ 3 > breaking in 2 ways - emitting state 2

from one end and state 1 from the other and the reverse. The second diagram

is however related to the first:

< 3 I V(2) t 1 >-- (-1) N'+N'+N_< 1 I V(2) I 3 > (27)

by a generalisation of the cyclic symmetry proof. Here N_ is the level number

of the ith state.

This means that the total amplitude of a given process is zero unless

(-1) Iv' = (-1) N2+N', an expression of C conservation. For example the

17
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amplitude for a tachyon (and more generally any string state) to scatter off a

photon is zero, indicating that the string states carry no net charge, consistent

with the picture of their coupling to photons as "dipoles", carrying oppositely

charged particles at either end.

The second diagram may be written in terms of the first diagram by using

the twist operator _ = (-1) y

< 3 I V(2) I 1 >= (-1) _r2 < 1 I nv(2)a 1 3 > (28)

How does this relate to loop diagrams? For oriented open strings, the nonori-

entable diagram (Figure 5a) does not contribute - cutting the loop reveals a

string with two like charges at the ends. So there are just the planar and

nonplanar orientable (Figure 5b) diagrams to consider. Now it is seen that

squaring the two tree diagrams and summing over intermediate states will

result in two direct terms, equal to the planar diagram, and two interference

terms, equal to the nonplanar orientable diagram. This shows that for our

loop diagrams to give a unitary result, we must add in the loop diagram

with two twists with the same weight as the planar diagram but with a level-

dependent phase factor (-1) _" as well. Thus for the nonplanar orientable

diagram the trace in (14) is replaced with

Tr(zf°nVk zL°nv-, )(--1) N (29)

where N is the level number of the external particle.

The result of all this is very simple. The effect of the twist operator in

the trace part of the loop amplitude is to change zl and z2 to -zl and -z2.

When we add the two loop diagrams, then terms involving odd total powers

of N + p + q cancel, just as they should.

18
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For other groups the diagrammatics is more complicated (see [1]) and

in general the nonorientable diagram is essential for unitarity. We will not

pursue this here - the group theoretic factors should not qualitatively alter

our result.

As is well known, the nonplanar orientable diagram we have included

has singularities corresponding to propagation of closed string intermediate

states (as may be seen heuristically by lifting the inner circle of Figure 5b).

In fact it was this observation, and the requirement that the singularities be

poles that led to the realisation of the importance of d = 26 in string theory.

At tree level, this corresponds to a two point coupling between open and

closed string states, necessary for unitarity, which means that open string

states can in principle mix with closed string states to form the true mass

eigenstates of the theory. However in our case it is clear that mixing cannot

occur. This is because for the open string the states on the leading Regge

trajectory have J = _'M 2 + 1 and M 2 = }(lV - Z) whereas for the closed

string the relation is J = _z_'_w_Ar2-4- 2, and M 2 = 4(N - 1). It follows that

for M _ > 0 no closed string state has the correct mass and spin to mix

with the leading Regge trajectory open string states. Thus we are not faced

with singularities corresponding to intermediate closed string states and the

consequent requirement that d = 26.

5 Decay Rates

Equation (26) with the added nonplanar diagram contains all the information

pertaining to the decay rate of a leading trajectory state. However, it is not
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in an immediately useable form for we have not given an analytic expression

for the coefficients C_q. To try to understand which terms dominate the sum

in (26) we have written a computer program to explicitly compute the various

coefficients for different external states, namely those with level number N

up to 100 (Figure 6). We chose d=4 in order that the variation with N could

clearly be seen. The results for N = 6 and N = 20 are shown in Figures 7

and 8. The decay rate for a string at level N is dominated by decay into a

photon (p,q = 1) and a massive string with q,p = N - 1. The rate for this

process alone is also shown in Figure 6 as well as an analytic approximation

to it we shall derive below.

If we define, for given p, q

(30)

where

r(lv + 1)_'+'-_(N - _)'-_+" (3i)
_(_) = r(; ¥ _ f(_-; -7-_ _(_¥; - ½)

then the coefficient of XlZ21aq gives the rate of decay into a string at level p and

one at level q. The crucial point is very simple, q(r) is a rapidly decreasing

function of r, and this effect dominates in d=4.

Our strategy is to extract, for r = 0,1, 2..., the coefficient of z_-lz2 in

(30). We denote this coefficient Q,. In this term, p = N - 1 and q = 1 or

i We findvica versa so from (25) a = 2(iv-i-------i"

N
Q0 -

(N- i)v_

-2N
Qi =

3(IV- 1)v_
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N(3N - 4)

Q: = 24(lv-

-N(N- 2)(19N - 40) (32)
Qa = 1260(N - 1) 3._

The sum of these terms appears to converge rapidly with increasing r.

The terms above add to 0.443/Vr_ for large N. so that from (26) we have

1 0.443g _ (33)
FN-.N-I,1 "_ E_zt 167r

including an extra factor of two because of decay into mix N-1 and x2m_ -1

1 (seea factor of two from the optical theorem and a 'symmetry' factor of

Appendix B). This result is compared with the exact result as evaluated on

a computer in Figure 6.

This result certainly provides a lower bound on the total decay rate of

this string state. The total decay rate is not dominated by this process for

N < 100 . It does however appear to decrease more steeply as one goes

to larger N - the magnitude of the slope of F versus N increases in the

ratios 1 : 1.24 : 1.53 for the ranges 60 - 80, 80 - 90, 90 - 100, faster than

a simple power law (the magnitude of the slope any power law decreases

with increasing N). If we extrapolate the slope at N = 100 to higher N

we would find the total decay rate reached (33) at N _ 270. The total

decay rate certainly must flatten out for N of this order. Unfortunately

the exact computation becomes prohibitive at such large N. It does seem

possible therefore that the total decay rate approaches (33) (possibly times a

constant) for very large N. It seems very difficult to check this conjecture in

our approach. In fact Green and Veneziano [5] argued that the total decay

rate should go like 1/E,_.t - our result seems consistent with this. However
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they applied this to meson resonances with N < 5 - we have shown a far

better way to calculate the result for small N.

In any case our results are rather surprising from the point of view of

string interactions as splitting and joining - our result certainly conflicts

with the idea of a splitting probability per unit length. This would lead to

I' o¢ v/-N. Unless something very strange happens at large N we have the

bound const/v/N < F < const .

If the lower bound is saturated for very large N this means that the decay

is completely dominated by the ends of the string - if one determines from

(33) a rate of energy loss

0.443g 2
P = FE_t ,_ 16----_- (34)

then this is completely independent of the mass (and thus the 'size'J2] of the

rotating string). Thus the lifetime of a string would be proportional to its

length.

It would also be interesting to calculate decay rates for strings in more

general states, to see whether and how the picture changes.

In Figures 7 and 8 we show plots of the amplitudes of the various terms

in (30) for N = 6 and N = 20.

As we discussed in Section 1, we expect the decay rate to be very much

suppressed in higher dimensions from phase space. We calculated the total

decay rate in d = 8 and d = 26 for N - 20 and 40 to check this. The result,

in the same units as Figure 6 but with appropriate powers of _ to make

up dimensions, were for d = 8:F20 -- 1.37.10-2,F4o = 1.31.10 -2 and for

d = 26: F2o = 3.78.10 -l°, F40 - 7.79.10 -l°, much smaller as expected. These
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cases are also different in that the N - 1, 1 term that we saw was largest in

d = 4 is no longer largest here. These results give some indication that in

high dimensions string cosmology may be rather complicated - large strings

can have quite long lifetimes. Of course all this would also be affected by

powers of the compactification radius in any 'realistic' model of open strings.

6 Superstrings

In this section we sketch the calculation for the decay rate of the analagous

first excited level in the open superstring model. This is harder because

the general vertex is not known, and the fermionic traces difficult. Thus we

shall only deal with the simplest case. There are no surprises here - the first

massive state decays in a Planck time. As in the bosonic case we use the

optical theorem, and thus we compute the imaginary part of the two point

one-loop amplitude. We perform the calculation of the amplitude using the

vertex operator formalism in the light-cone gauge. As a first step we have

to determine the vertex, in the light-cone gauge, for the emission of the first

excited state of mass m = _ (we set 2a' = 1 throughout this section). To

do this we write the most general combination of pi and Riik j operators [1]

with conformal spin 1 compatible with the symmetric polarisation tensor (ij

V((_J,k l) = g('J(A1P_P _ + A2(P'RJZk ! + PJR_lk l) + AaR"ktRi"k")e '_x (35)

with

p_ = cgXi/Or

R"i = _'7_,S°5 'b (36)
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Our notation as before is that of [1]. _i_ is the traceless symmetric polari-

sation tensor with with _iJkJ -_iJki - 0. The coefficients ,_1,,_2 and _3 can

be determined by evaluating the matrix dement of the coupling between two

massless particles and one massive particle in two different ways. First we

take the above vertex between two massless states

_' < k3,,_ I V(¢_,k[)Lk2,m > _7

_ _$ et/" _ki/'iek¢ -_ r[k/" '_kie'ij/'j [k "" "_/'i#JkJ "k /" '_ki/'ij''j

(we used momentum conservation _i kl = O) or by taking the matrix element

of the vertex for the emission of a massless state between an excited and a

massless state in a cyclic permutation of (37)

n i
G G < kz,n I g(P i- RiSk_)eik'x,',t_ 1 l kx,m > ff_,t

_ "...... _ i ij j _re/. _kie.lfkJ (38)

1 and A3- xComparing the results of (37) and (38) we find )h = 1,,_ = _ - _.

With the above vertex we can compute the two point one-loop amplitude

defined as

Ak = Tr(A1VkA,V_k) (39)

where Vh is the vertex 35 for the emission of a particle corresponding to

the first excited state and A. is the string propagator between neighboring

vertices

lfo A. = _ dz,,z_ -1 (40)

and

i i

L = + + ns'_.s:)
rl,---- 1
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Due to the fact that TrR '_ = 0 for n <_ 3 only the last term, proportional

to A3 contributes to the amplitude. Due to supersymmetry the partition

function, f(w) = Hn_I(1 -- Wn), cancels out.

can be easily carried out.

For the amplitude we get

Ak --

C

The trace over the oscillators

f K _,Op dzl dz2z_ z 2 _ C
16

fi [(1 - wn-lx2)(1 -- _Mn_21)]2
,_=, (1 - w'_) _

using k 2 = -2 with w = zlz2 and the kinematical factor

K = _ij _t_ k,_kq ktk • ti,_jttq,,_,

(42)

(43)

(44)

where

t injtlqrnz = Tr[RinRJtRlqR'nZl (45)
_ -- L--O --0 --0 --0 J

as defined in [1]. Using the mass shell and gauge conditions we can evaluate

K,

K = 8( 2 = vf8 (46)

using _2 _ 12_., = _ The momentum integrationiscarriedout as in section

2 and the polynomial C expanded as in section3. The only term contributing

an imaginary part is the first;itgives 1. We thus get

1 g2K16i-3 fo ldy f-:^ dz z-% -`'A-'" (47)(

with A = y_ -y. The imaginary part is then, following the method presented

in section 1

fo g2 KTr (48)i (27r)sl 7rfg16.6 dy(y - y2)3 = i(27r)S16.6.140
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The same result is obtained from the diagram with one twist (which has an

additional minus sign) , and the diagram with two twists.

The first excited level decays into 2 massless ground state particles. The

decay rate, in units where 2a' = 1, is given by

r- g27rv_
(27r)S6720 (49)

The extension of the above calculation to higher excited states appears to be

difficult in this formalism - being comphcated in particular by the fermionic

traces.

7 Appendix A

In general the function A(y) is a parabola with zeros at y±. Shifting y to

Y=Y- _2 and defining a = _2 we obtain

//
G

Changing variables to z = (_)2 this is

in g2rt+l 1= dzz-_(1 - z) _'

which is just

-5 =

the required result.
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8 Appendix B

As we argued in Section (4) the two one loop diagrams must be added with

equal weight. The overall weight of these diagrams can be found by explic-

itly calculating the tree amplitudes for the lowest excited states and then

comparing this answer to that derived via the optical theorem. We shall

choose the simplest well-defined case - the decay of an N = 2 state into

photons. The result we find is that if the tree level coupling constant is g

(3 for each diagram, see section 4) then each of the loop diagrams must be

added in with a coupling (3) 2 i.e. one could take one loop diagram with a

1 and the rule that C be conserved. If nothing else thissymmetry factor of

appendix should convince the reader that calculating total decay rates by

summing over polarisations and integrating over phase space is considerably

more complicated than using the optical theorem! We shall also calculate in

arbitrary d as a useful check of the formalism above. By calculating CO, C_x

and C_1 explicitly we find that

1 (50)
g'_' 7r [8(d + 1)(d- 1) - 16(d + 1) + (d + 6)] F(-_-)F2--.x,x = 2__

where an extra factor of 1 has been added to correctly normalise the

external state. Here _,,_ is the polarisation tensor of the initial massive state.

Now we check this using the tree amplitude method. The polarisation

I

vectors of the photons will be called e_,, %. The matrix element for the

transition is given by

3 1 d
T '_:_= g < ks [ a7 : P'_P:_e ik'x : a _- [ -kl > _,_xe,,e,r6 (k2 - kl - ks) (51)

It is important to remember all the constraints on the polarisation tensor and
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vectors, namely that they are transverse and that the tensor has no trace.

Calculating all the various terms in (51) we arrive at

T_,x g('l kt kl + 2Tf'"@ "_- + 2k2 _! 'h - kl kl k2 k2 )

_,_,446t(k3+ kl - k_) (52)

and so the decay rate is simply

1 ,_ f _,k,a,%_(k,)0(ko)_(k_)0(ko_(k' _ k_- k_)fT_ t' (_3)F = 4E----_

1 forwhere we sum over the final polarisation vectors and include a factor of 5

the two identical final particles. The various identities we will need are:

k_._ = 0

, /_, (54)

where the arrow over any quantity indicates that only the spatial components

are nonzero. We now choose the frame k2 = (M, 0, ...) which implies that

fc2 -- 0 so

Hence we can rewrite (53)

F

/_ _ _°_:. = 0 (55)
¢

(56)
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but E2 = v/2, thus after a little algebra we find

1 [ _-Ik_ _9(E2- 2EI)[4_ay _r - E---T

_4k_ ka171,a 4

k_ k_

+ (d- 2)4k_k_k_](_ _'i

k_

k_

(57)

we now use the identity

2n indlccs
d--I

/ 2,-o T /k'o"-'sck') ¢58)_-lf_ kk... S(k _1 = (2r1-2:-_,_)

where "spare" indices from the LHS are used up in all distinct permutations

of metric tensors e.g

2_ 1 _-*7rT

(2_)d-_r(_2 /

/ kf+' S(k_)_ (,_%_ + _,_1 (59)

all other 7p/ giving zero due to the tracelessness of (_x. Doing this for all

terms we recover exactly (50).
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Figure Captions

Figure 1

2
The optical theorem in lowest order for a _&¢ coupling.

Figure 2

Contours for integration in determining the imaginary part of the one loop
amplitude.

Figure 3

The function A(y)

Figure 4

Constructing the planar self energy loop by sewing the ends of a tree
diagram.

Figure 5

(a) The nonorientable nonplanar self energy diagram (b) The orientable
nonplanar self energy diagram Diagram (a) is excluded for U(1) open
strings since cutting it reveals a string with two like charges on the ends.

Figure 6

The total decay rate in d = 4 as a function of level number N up to,

N = 100 (crosses on solid line). It is given in units of (g2/167r) 2v/_ -;. Also
shown is the decay rate into a single photon and a state at level N - 1, the
largest single process, in the same units (crosses on dashed line), and our
analytic approximation to it, equation (33) (plain dashed line), which

becomes very good for large N.

Figure 7

The decay of an N = 6 string, p and q correspond to the level numbers of
the decay products - the axes are marked off in integers starting at
p = q = 1, corresponding to massless particles, p + q = odd decays are
torbidden by C conservation. The vertical scale is in units of the height of
the largest peaks, which correspond to decay into a photon plus a string at
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the next level down.

Figure 8

The decay of an N : 20 string. The axes are as in Figure 7.
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